

JAEHYUN LIM

412-785-4755 | jaehyunrlim@gmail.com | linkedin.com/in/jaehyunrlim | github.com/jobitaki

EDUCATION

Carnegie Mellon University

BS in Electrical and Computer Engineering, 3.81 QPA

Pittsburgh, PA

Aug. 2022 – Dec 2026

- **Extracurricular Activities:** Board member and volunteer at ECE Outreach (electrical and computer engineering education outreach in Pittsburgh community), D Flat Singers Choir singer
- **Selected Coursework:** Modern Computer Architecture, Data Center Computing, Logic Design and Verification, Computer Networks, Introduction to Embedded Systems, Computer Systems and the Hardware-Software Interface

TECHNICAL SKILLS

Languages and tools: SystemVerilog, C++, C, Python, MLIR, Git, VCS, Quartus, Vivado, Design Compiler

EXPERIENCE

Undergraduate Research Assistant

Dec. 2024 – Present

Pittsburgh, PA

Abstract Lab @ CMU

- Supporting research on general-purpose dataflow architectures by implementing CPU-style Load-Store queues to enable lock-free memory operations and increased parallelism.
- Contributing to MLIR-based compiler project targeting multiple dataflow architectures with custom dialects and transformation passes. Created control flow optimization pass to reduce the number of dataflow steers.

Hardware Logic Intern

June 2024 – Aug. 2024

Seongnam, South Korea

Rebellions

- Designed a pipe-lined SECDED memory ECC system to meet 1.6 GHz target, making it parameterizable for any number of bit-widths in SystemVerilog, complete with random constrained testing.
- Programmed a Python script that runs a genetic algorithm design space exploration to optimize the parity-check matrix in terms of logic depth, power, size, and SDC rate with self-verifying ability using VCS and testbench.
- Realized up to 65% reduction in number of logic gate toggles, and 50% reduction with respect to SDC rate.

Teaching Assistant

Spring 2024 – Spring 2025

Carnegie Mellon University, 18-240 Structure and Design of Digital Systems

Pittsburgh, PA

- Led recitations, office hours, and lab sessions to teach concepts that include: combinational logic, clock timing, sequential logic design, RTL design, computer architecture, assembly and SystemVerilog.

PROJECTS

Sniff Pittsburgh (Senior Capstone) ↗ | Python, C, LoRaWAN, Flask, HTML, CSS, Docker

Dec 2025

- Created a mobile, low cost air quality monitoring solution to be mounted on POGOH bikeshare bikes with the goal of filling in gaps in existing air quality maps.
- Engineered the LoRaWAN, cellular, and HTTP communications stack of the system, creating a pathway for air quality data to be uploaded to our website.
- Designed and implemented sniffpittsburgh.com, a real time map of bicycle-collected air quality data across Pittsburgh.
- David Tuma Undergraduate Project Award – First Runner Up

MLIR Compiler ↗ | C++, MLIR, Git

June 2025

- Created a compiler for a toy scripting language that emits MLIR with C++ lexer and parser and MLIR + LLVM backend.

RISC-V Processor | SystemVerilog, Git

May 2025

- Created a pipelined RV32I core with cache prefetching, branch prediction, and data-forwarding.

SUBLEQ Processor ↗ | SystemVerilog, Git

Jan 2025

- Created a Turing-complete, single-instruction set processor for Build18, a week-long CMU hardware hackathon.

Real-Time Operating System | C, STM32, Fusion360, PCB fabrication, Git

Dec 2024

- Programmed an RTOS with RMS scheduling for up to 15 threads with context-switching, deadlines, and mutexes.

ATC on a Chip (Tapeout) ↗ | SystemVerilog, cocotb, Verilator, Yosys, OpenLane, Git

May 2024

- Used completely open source ASIC tool-chain to tape out a chip using Skywater's 130nm process. Implements a just-for-fun air traffic control system that manages a small-scale airport with two runways, managing communication with UART and FIFO queues.